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PHOTON COUNTING: A PROBLEM IN
CLASSICAL NOISE THEORY

By Sherman Rarp and John R. Clark
Electronics Research Center

SUMMARY

In this report we formulate the general problem of determining
the photoelectron "counting" distribution resulting from an elec-
tromagnetic field impinging on a quantum detector. Although the
detector model used was derived gquantum mechanically, our treat-
ment is wholly classical and includes all results known to-date.
This combination is commonly referred to as the semiclassical
approach. The emphasis, however, lies in directing the problem

towards optical communication.

The electromagnetic field is assumed to be the sum of a
deterministic signal and a zero-mean, narrow-band, gaussian random
process, and is expanded in a Karhunen-Loéve series of orthogon:zl
functions. Several examples are given. It is shown that all the
results obtainable can be written explicitly in terms of the noise
covariance function. Particular attention is given to the case
of a signal plus white gaussian noise, both of which are band-
limited to *# B Hz. Since the result is a fundamental one, to
add some physical insight, we show four methods by which it can
be obtained. Various limiting forms of this distribution are
derived, including the necessary conditions for those commonly
accepted. The likelihood functional is established and is shown
to be the product of Laguerre polynomials. For the problem of
continuous estimation, the Fisher information kernel is derived
and an important limiting form is obtained. The MAP (maximum a
posteriori) and ML (maximum likelihood) estimation equations are
also derived. 1In the latter case the results are also functions

of Laguerre polynomials.



INTRODUCTION

Since the advent of the laser, a problem of growing impor-
tance in optical communications and coherence theory has been
the determiniation of the output statistics of a quantum detector
excited by a narrow-band gaussian source. In optical communica-
tions, knowledge of these statistics is necessary for the appli-
cation of the techniques of optimum detection and estimation
theory. In the physical theory of coherence, these statistics
are a means by which the light incident on the detector can be
studied. In both cases a useful statistic, which is relatively
easy to evaluate, is the probability pNt(k) of detecting k events,
or "counts," in the time interval (0,t]. 1In an idealized detector
the conditional probability of k counts in (0,t], given the in-
cident radiation, can be shown to obey a Poisson law, with the

time-averaged intensity of the field as rate parameter.

Although this idealized detector model is based on the gquantum
theory of photodetection, statistics such as pNt(k) can, if de-
sired, be correctly calculated by using only classical tools,
provided the proper quantum model has been postulated. This is
the essence of the so-called "semiclassical" approach, which we
shall use in this report (ref. 1). The value of this approach
lies not so much in its freedom from guantum-mechanical subtleties,
as much as in the ease with which it allows meaningful physical
interpretations to be made and comparisons to be drawn. We shall
therefore not dwell on the physical considerations leading to the
derivation of the Poisson model, since it is generally accepted
as an adequate probabilistic description of an ideal quantum
detector localized at a point in space (ref. 2). The physics
underlying this model and others is discussed at length in the
literature on gquantum detectors.

The problem of determining the counting distribution pNt(k)

has been approached by a number of authors, within the framework

of laser intensity fluctuation studies (refs. 3 through 8). It
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is intimately connected with the classic noise theory problem of
finding the statistics of the time-averaged square of a real
process. Random functionals of this type have been treated in
considerable generality for gaussian processes; we list only a
few of the more important works in references 9 through 15.

Here, we present a general method for finding PNt(k) when
the light incident on the detector is a deterministic signal
plus a narrow-band gaussian process. Our results are shown to
encompass as special cases several previously known results.
The method is a generalization of Mandel's (ref. 5) in which we
allow the incident field to have a nonzero mean, and pNt(k) is
expressed in terms of the cumulants of the time-averaged intensity.
Several specific examples are worked out in detail, which are
in agreement with known results when such results exist. Con-
siderable attention is given to the important case in which the
radiation is a deterministic signal in band-limited white gaussian
noise. For this example, we show how the results can be applied

to some problems of interest in optical communications.
DERIVATION OF THE COUNTING DISTRIBUTION

First, we consider the Poisson model for the ideal quantum

detector. Given a counting statistic N, at time t, conditioned

on a function [a(Tt); 0 < T £ t], such that it obeys a Poisson
law,
Pri{N, = k|lla(t);0 < t 2 t11}
m(£) 1% _-m(e)
S Tkr© (h
t 2
m(t) = o j.la(T)l drt (2)
0

we want to know the probability Pr{Nt = k} when a(t) is the complex
envelope of a narrow-band gaussian process. Here a = n/hv, where



n is the quantum efficiency, h is Planck's constant, and v is the
frequency. With m, the random value assumed by m(t') at time
t' = t, it is clear from Eq. (1) that the probability of k counts

in (0,t] is given formally by

Py () = & E{e—mt m],Z} (3)

where the expectation is taken over the random variable m, .

We shall take a(t) to be the complex envelope of a real, not

necessarily stationary, gaussian process o (1),

a(t) = Re[a(T)ejzﬂfOT] (4)

which is assumed to be narrow-band about some very high frequency

f . We shall also assume that the covariance function of a(t) is
real. With these assumptions we can show that the real and
imaginary parts of a(t) are independent and have the same covariance

function. In addition we assume that a(t) can be written

a(t) = s(1) + n(1) (5)

where s(t) is a deterministic signal and n{T) is a zero-mean

gaussian random process.

Instead of evaluating Egq. (3) directly for pNt(k), we shall

find the characteristic function of Nt:

Mo (jv) = E<M (3v) (6)
Ne { Ny [me }

(7)

m, (edV - 1)
E;e t

Then pNt(k) can be found either by direct inversion of MNt(jV),

or from one of the following formulas:



p. (k) = EDE 8y - o)) (8)

Nt k! ng Nt E=1
_ 1 v (=n°
pNt(k) kT z; n' Yk+n (9)
n=0
My is the i-th moment of m,; in terms of MNt(jv),
ai

H, = — M [en(1l + £&)] (10)

1 agl Nt £ =0

Equation (8) is the equivalent of differentiating the probability
generating function of N, and Eq. (9) is the result of expanding

the exponential in Eg. (3) in a power series.

We see from Eg. (7) that MNt(jV) is simply the moment

generating function of m, ,

M () = E{emtu} (11)

evaluated at u = ejV - 1; thus, we can confine our attention to

the random variable, m, .

It is convenient to expand a(t) in a Karhunen-Loéve series
on {0,t] (ref. 16):

a(t) = 2: a.o. (1)

= 2 (s; + ny)e, (1) (12)
1

The equality, of course, is in the sense of "limit-in-the-mean."

The coefficients are given by

ES



n. = (n, d)') (13)

1 1
si = (sl ¢l) (14)
where
t
(x, y) =f x(t)y*(t)dr (15)
0

and the {¢i} are eigenfunctions of the integral equation

t
Xicpi (u) = Kncbi =‘/(; Kn(u, v)d)i(v)dv (16)
Here Kn(u, v) = E{n(u)n*(v)} is the covariance kernel of the noise.
The {¢i} are normalized so that (¢i, ¢j) = sij'

It is clear from the orthonormality of the eigenfunctions

that mt can be written

|2=0LZ lsi+ni|2 (17)
i

m, = onzi |a;

Notice that m, is the energy in the process at time t. Since n(71)
is a zero-mean gaussian random process, the {ni} are gaussian
random variables, with E(ni) = 0 and E(nin;) = Aiéij' This
orthogonality depends critically upon choosing the basis to
satisfy Eq. (16) uniquely. If, however, there is no noise

(n(t) = 0), a(t) = s(t) can be expanded in any complete ortho-
normal set {wi} on [0,t], and Eq. (16) is irrelevant. For this

case, with c; = (a, wi), Eg. (1) can be written

Pr{N = k|la(t); 0 < T = t]}

5 k
2 oleyl 5
= L1 T . exp - z oclcil (18)
i




Each coordinate axis in the space contributes an independent
Poisson variate N

ti’
Pr{Nti = kil[a(r); 0 < T < t]}
k.
Icilz] . —OLICilz
= Pr{Nti = ki|ci} =~ e (19)
i

where N, = 2; N s and k = }; ki (ref. 17). This is clearly
independent of the particular basis chosen; only the {ci} change.
Each axis always contributes an independent Poisson variate. In
addition, since z; |ci|2 is the energy of a(t) in [0,t], the

conditional density of N_ is independent of the functional form

t
of a(t). If we choose {wi} to be the sinusoidal set on [0,t],

then |ci|2 represents the energy of a(t) at the frequency of wi.
If a(t) = wj(T) for some j, then k = kj and Eg. (18) reduces to

Eq. (19) with i = 5.

For the more general case of nonzero noise, we observe that
only one particular orthonormal set can be used as a basis for
expanding a(t), if we desire each axis in the space to contribute
an independent variate to Nt' That basis, of course, must
satisfy Kn¢ = A¢, Eq. (16). (The only exception is white gaussian
noise, for which Eg. (16) is satisfied by any complete orthonormal
set; then each axis in the space contributes an independent,

identically distributed random variable.)

For narrow-band gaussian noise, we now show that the con-
tribution from each axis is an independent Laguerre-distributed
variate and, consequently, that N, can always be represented as
the sum of independent Laguerre random variables.

The real and imaginary parts of n, = (n, ¢i) are independent,

each with wvariance Ai/2, thus (ref. 18, p. 196),



(A) =
Pla; | (20)
0, elsewhere
the so~called Rician density, where Io is the zero-order modified
Bessel function of the first kind. It follows that Iai|2 has the

density function

L L o
A s. |
%_ € ' Is (2 —Ti_ Al/%>, A20
i i
P, (@a) =< (21)
|ail 0, elsewhere

\ :
|

Since the {ai} are independent, it follows that the {Iai } are
also independent. Thus, from Egs. (11) and (17) we see that
2
ala; [“u
M (u) =1 Ejie (22)
m ,
t 1

2
Now, with x a real, gaussian variate, E{eX u} is given by (ref.

19, p. 396)

2
E(x)u
2 exp [ — ]
E;ex u} _ L1 2var{?;u o Rre u < . l( (23)
P - 2var(x)u] var (x)
Thus, .
2
Mm (u) = H T - ar.u P T u Re u < o max A. (24)
t 1 1 1 i 1
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and

als, |2V - 1)
MN (jv) =1 - l'v exp = =
t if1- axi(eJ - 1) 1 - a;\i(eJ - 1)

(25)

The quantity within the brackets is the characteristic
function of a Laguerre random variable for which the probability
distribution is (ref. 20)

als, |?
-
qu]ki L+ary Mk
i i

(k.) = NS e .. |-
ki & (1 + axi)l + ky kg Ay O L+ 0ky)

Py
(26)
Ly is the zero-order Laguerre polynomial (ref. 21, Eg. (8.97)).
Thus, we see that Nt can be represented as the sum E:I%j.of
Laguerre variates, as asserted. If the noise is gaussian, the.e
always exists an operation which acts on Eg. (18), producing

another independent coordiniate system of orthogonal axes
(Egs. (25) and (26)).

If s; = 0 for some i,

axélki
py (k) = - -k (27)
Ny 3 (1 + axi)l + ky

Hence any coordinate ¢i for which s; = 0 contributes a Bose-

Einstein random variable to Nt'

Proceeding formally, we note that pNt(k) is just the in-
finite convolution of the {pNt-(ki)} for all i. As this is
i
usually difficult to evaluate explicitly by using Eq. (26), we

shall concentrate our attention on Eg. (24) instead.



We mention in passing that if the noise n(t) is not gaussian,
the interpretation in the preceding three paragraphs cannot be
used; i.e., there does not exist an orthonormal basis in which

a(t) can be expanded such that Nt can be represented as the sum

of independent variates.

Mmt(u), Eg. (24), can be cast into a completely equivalent
form that does not explicitly involve the eigenvalues {Ai} (refs.

9 and 22). The identities which make this possible are (ref. 23)
t (k) . .
Yok o g &) =f x Tt g (28)
~ " i n n
i 0
and
2 .k _ (k)
Z|Si| Ai = (s, Kn s) (29)
i
where
(k) t (k-1)
k) (u, v) =fK (w,E)K (£, v) dE (30)
0
k1) = x (31)
n n _
K(O) Z identit t
N = y operator (32)
By expanding log (1 - akiu) and (1 - qkiu)-l in power series, and

using Egs. (28) and (29), we get the immediate result

ﬁ “k _k 1
M (u) = exp — u , (Re U < ————F+— (33)
m, K=1 k! o mgx(ki)
i
and {Ki}, the cumulants of m , are
- _— ' (1) : (i-1) i
Ki = [(1 l).TrKn + J..(s,Kn s)|a (34)

10

By



For the case, s(t) = 0, a number of authors have obtained
expressions equivalent to Eg. (24) or Eq. (33) (refs. 3, 4, 7,
and 9). Related results have also been obtained for real, rather
than complex, a(t) (refs. 9, 10, 11, 12, 14, and 15).

The form of the noise will often dictate which of the two
formulas, Eq. (24) or Egqg. (33), will be the more convenient in
practice. The integral equation (Egq. (16)) is difficult to
solve, and even when the eigenvalues are available, Eg. (24)
might not simplify significantly. On the other hand, as Slepian
(ref. 11) has pointed out, the iterated kernels (Eg. (30)) are
usually difficult to evaluate beyond the first few orders;
however, they are often all that is needed for a good approxima-

tion.

We can now find pNt(k) by using one of the formulas, Eqg.
(8) or Eq. (9). It turns out that Eg. (9) can be evaluated
almost trivially with the help of the moment generating function
Mmt(u). Since the moments {ui} and the cumulants {Ki} are
related, we need not evaluate Egqg. (10) directly. We use instead
the formula (ref. 24),

_ 1 !
ue = 2 'Z kT kT Ck, Sk, ot Kk, (35)

i=1 - i 1 i 1 72 i
> k. =k
j=1J
k., 21
J
Along with Egs. (34) and (35), Eg. (9) gives an exact expression

for pNt(k), the desired counting distribution, in terms of the

covariance K, and the signal s,

The fundamental quantities here are the cumulants {Ki}, in
terms of which a number of the statistical characteristics of
Nt can be expressed. Some of the more important relations are
derived in the Appendix. Using Egs. (28), (29), (34), and (A2),

we find the mean and variance of Nt to be

11



E(Nt) =Z ocAi + a((s, s)

i
= aTrKn + a(s, s) (36)
2
var(Nt) = 2: oA, + a((s, s) + 2: [aA.]
- i : i
i i
1 2
+2 X [omi] als; |
i
(2)
= OLTrKn + af(s, s) + a TrKn
2
+ 2a° (s, Kns) (37)

Notice that the only quantities involved in Eqgs. (36) and (37)

are the noise covariance, the signal, and the time, t.

It should be emphasized that our method of finding pNt(k)
through the characteristic function is not always the easiest
path to the desired answer. Indeed, for certain noise sources
the most direct route to pNt(k) might be the direct evaluation
of pmt(M), the density function of m,, and use of Eg. (3).
Whichever method is to be used is best decided when the precise

form of Kn has been ascertained.
EXAMPLES AND APPLICATIONS

It can be seen that the mathematical form of pNt(k) is
considerably more complicated than that of My (jv) — not a
surprising situation in nonlinear noise problems. In most
applications of interest, one expects that py (k) will be much
easier to find by evaluating MNt(jV) first, rather than by going
directly to Egs. (9), (34), and (35). 1In the examples to

follow, this is certainly the case.

12



Noise Only (s(t) = 0)

Integrated white noise: Kn(u, v) = p2 min (u, v).- Although

this example appears to be only of academic value, it is illus-
trative of a particularly simple means of obtaining pNt(k). It

is well known that the eigenvalues of Eq. (16) are (ref. 19,
page 196)

2,2
t .
Ay =2t~ i=1, 02,3, ... (38)
T (2i-1)
Inserting this in Eqg. (24) and using a tabulated product rule,

we get (ref. 21, Eg. (1.4313))

Mm (u) = sec (ptvoau) (39)
t
The coefficients in the Taylor series expansion of Eg. (39) are

the moments {ui} of m_; since (ref. 21, Eq. (1.4119))

@ |Ey | 2

sec X = 2: -—Jéir x2k ’ ‘x2 < I_ (40)
- (2k) ! 4
=0

we have
k
_ k! 2,2
M = T 1Bkl (epTED) (41)

and the {Ei} are the Euler numbers. Equation (9) now gives PNt(k)
directly:

o k+n
_ (-1)" 2,2 k+n
Py, ) = 2 (—zm( n) Ejkaonl (@p7ED) (42)

Because of the simple form of Mmt(u), we can find the
counting distribution without first having to compute the cumu-

lants {Ki}. The mean and variance of the counts work out to be

13



_ o 2.2
o 2.2, 0% 4.4
var(Nt) =350 t° + ra t (44)
First-order Markov noise: K, (u,v) = P exp - Blu-v|.-
Equation (24) becomes - ‘
My (@) = Ty (45)
t i ~i

with xi a solution of a transcendental equation (ref. 9).
Equation (45) has been evaluated by an indirect technique (ref.

14) and is given by

_ Bt 2Po
Mmt(u) = e {cosh [Bt(l e u)]

1 - %ﬁ u P -1
+ ———-——-—l >Pa sinh [Bt(l - 5 u)]} (46)

This does not easily yield a useful expression for pN+(k);
however, using the Leibnitz differentiation rule, Bedard (ref. 3)
has obtained recurrence relations for the counting distribution
and its factorial moments. For certain limiting cases, approxi-

mate counting distributions have been obtained (ref. 7).

The mean and variance of N, are easily found to be

E(Nt) = aPt (47)

2
var(Nt) = Pt + (aP; [ZBt + e—ZBt - l] (48)
28

Band-limited white gaussian noise.- Let n(t) be a white

gaussian process, band-limited to *B Hz, with two-sided spectral

14



height N - Taking the first 2Bt + 1 eigenvalues of Eq. (16) to
be the same (NO), and the rest to be zero (ref. 19, page 193),
Eq. (24) becomes

1 2Bt + 1
My, (@) = (mﬂ\) (49)
t o
that is,
2Bt + 1
. 1
M. (jv) = — : (50)
Ne [l - OLNO(eJv - l)]

This can be recognized as the characteristic function of the

negative binomial distribution (ref. 17)

2Bt + kK 1 2Bt + 1 o k
Py (k) = T+ oN_ T+ o (51)
t k o (o)

If 2Bt << 1 (t << %ﬁ)’ only one eigenvalue of Eg. (16) is

significant, and Egq. (50) reduces to
My (3V) = —— Lo (52)
t 1 - ocNo(e:J - 1)

In other words, the counting distribution is Bose-Einstein:

1 OLNo 8
pNt(k) =T+ an_ \1T + on (53)
lo] (@]

in agreement with Eq. (27). For 2Bt >> 1, and oN << 1, it can
easily be shown that pNt(k) approaches a Poisson distribution.”
On the other hand, for a nonzero signal and no noise, pNt(k) is
also Poisson, as we have seen. This behavior, in the case of

band-limited white-gaussian noise, is due to the complete

*“
Note: This limiting form can also be shown to be true for first-
order Markov noise, Eq. (46), when Bt >> 1 and B >> 4Po.

15



"smoothing out" of the intensity fluctuations, while in the
signal only case, it is due to the deterministic nature of the

signal.
Signal Plus Noise

Now we remove the restriction that s(t) be zero. Assume
that n(t) is band-limited white gaussian noise, as above. 1In
addition, assume that s(tr) is band-limited to *B' Hz, B' < B.
Equation (25) applies with Ki = No' and pNt(k) is just the
(2Bt + 1)-fold convolution of the Laguerre density (Eg. (26))
with itself. Omitting the details, we note that the result is

(ref. 21, Eg. (8.9771))

K _a(s, s)
o (k) = fayp? . I+ aN_ Lth[ (s, s) ]
Nt (1 + OLNO)k + 2Bt + 1 k No(l + OLNO)
(54)
where LﬁBt is the 2Bt-order Laguerre polynomial. The mean and
variance of Nt are found to be
E(Nt) = (2Bt + l)aNo + a(s, s) (55)
var(Nt) = (2Bt + 1) (1 + uNo)aNo + (1 + 2aNb)a(s, s) (56)
Equation (54) could have been found by evaluating pmt(M)
first, and using Eq. (3) — the alternative approach suggested

earlier. For this example, pmt(M) turns out to be a "noncentral
chi-square" density (i.e., the density of the sum of 2Bt + 1 in-

dependent Ricean variates):

M+ (s, s)a

1 [ M ]Bte aN, 1 2(s, s)l/2 M
Pp M) = N o (s, s)a 2Bt al72N
t o
0, elsewhere M >0 (57)

1/2

16



pNt(k), Eg. (54), results when the expression

f ]:t—,Mke—M p (M) am (58)
o X t

is evaluated.

For 2Bt << 1, Eqg. (54) reduces to Eq. (26); for 2Bt >> 1,
however, pNt(k) approaches a Poisson distribution when oN is
small. This is clear from the following discussion.

Let aNo << 1 and 2Bt >> 1; then, asymptotically,

1 2Bt + 1 -2BtocNO
~ e (59)
(l + aNO)
a(s, s)
1T+ an- ~ %(s, s) (60)
O
OLNO
I +on_ ~ %No (61)
o
28t [ (s, 8) 1 ol f(ope 4 (5. )" (62)
k N_ (1 + aN_) k! N
O O O

These Equations, together with Eq. (54), yield

k -
a(s, 8) + 2BtoN -[a(s, s) + 2BtaN_]
Py (k) ~ [ —%7 O] e [ © (63)
. !

Thus for small aNO and large 2Bt, the counting distribution is

Poisson, with the rate parameter the sum of a signal intensity

and an independent noise intensity. Expressing this in another
way, we note that N_ is the sum of two independent Poisson

t
variates; one associated with the signal (intensity %(s, s)a),

17



and one associated with the noise (intensity ZBNOa).

Our results for band-limited gaussian noise are well known
in the field of coherence theory (refs. 1, 2, 5, 6, 8, 20, and
25); in optical communications, however, they are just beginning
to find application (refs. 26, 27, and 28). In earlier papers
the asymptotic form (Eq. (63)) was used, with heuristic justi-
fication (refs. 29 and 30).

ESTIMATION FOR CONTINUOUS WAVEFORMS

For band-limited white gaussian noise, simple detection
and estimation problems can be solved with relative ease because
of the independence of noise samples taken at the Nyquist rate.
Assume that the interval [0,t] is broken into 2Bt equal sub-
intervals, each of length 1/2B sec. Then the probability of ki

detector counts in the i-th subinterval is given by

2
k. ofs, | 5
(aN_) T T I+ oN |s. |
° e ° 1L - = (64)
(1 + oN )1 + ky ko N (1 + aNo)
o

where [si|2 = |s %ﬁ |2/2B. Moreover, the counts in different
subintervals are independent, because the noise samples are
independent. Thus the joint probability pN(g) of the counts in

each subinterval is simply the product of probabilities (Eg. (64)):

2
k. ofs, | 5
2Bt (aN ) * T T F an_ Is. |
= i=1 (1 + aN_) i i o} o
(65)
with N = vector of 2Bt counting observables;
k = (kl, k2, ceeys kZBt)'

18



It is important to note that, for this representation to be
valid when the signal waveform is band-limited to #B Hz, it is
essential that the subintervals be of length precisely 1/2B sec.

Equation (65) suggests that we define the likelihood func-
tion A(k|s) to be

2
alsil

' 2Bt~ T+ oN s, 17 ]
’ Alkls) = 1T e L -
2= ky No(l + aNo)

i=1

(66)

It is now straightforward to set up decision structures for the
multiple-hypothesis detection problem. This has been done
elsewhere for a number of signaling schemes (ref. 27), so we

shall restrict our attention to the estimation problem.

We start with the assumption that s is a transformation,
s[t, x(1)], of some function, x(t1), which we wish to estimate;
X can be a modulation, a set of parameters, or a single number.

As is well known, a necessary condition for QMAP (1) to be the

maximum a posteriori (MAP) estimator of x(t), 0 < 1 £ t, is
VX[,QnA + amp, 1y [X(T)]]X . T (67)
MAP

where Vx is the gradient operator with respect to x(t), and
px(T)[X(T)] is the a priori probability density functional of
x(1t). In the absence of prior information, of course, Eg. (67)

reduces to the maximum likelihood equation,

vV AnA =0 (68)

A

= Xy,

With some manipulation, VxlnA works out to be
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20 2Bt * Bsi
Vb = e iz=:l clk;r s;IRe|S; 5377y

(0 < T £ t) (69)
where
Ll ~ lsl[?
1 k-1 N (1 + ocNo)
c(k., s.) = — = -1 (70)
1 1 OlNo l_ ISl|2
Lkll; N_(1 + oN )]

The problem is now simplified if we consider X as a set of para-
meters (say, M of them). Then, with x = (Xl’ Xy sens xM),

Eg. (69) reduces to the set of M expressions:

20 2Bt [ % BSi]
V. &nh = ————— Z: c(k., s.)Re|s. ——
X 1 + uNO i=1 i i i axk
(k =1, 2, ..., M) (71)

Further simplication is possible if s is a memoryless mapping;

thus, with X, = x(i/2B), Eg. (69) becomes
9s.
20, * i
T+ oN, <k Si)Re[si Sxi]

(i=1, 2, ..., 2Bt) (72)

Vgdnh =

In general, it appears that a search procedure is necessary to

find XMAP or XML.

If we now assume that the a priori density p )[X(T)] is

x (T
gaussian, then Eg. (67) reduces to
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|17
1 ;1 I
R “2a 2Bt JaN_ Tky-1 N (1 + aN_) * 955
x(T) =Wi§l [ |s|2 ] - lRe[sim
1
L T N_ {1+ oN)
kl No(l + U.No

% (1)

x(t)

(0 <1 £ t) (73)

which, as we can see from Figure 1, has very limited use.

- Summer % (1)

i
i Signal Ki 1 Z Discrete 20,
—_— " aN Integrat-| [(1+aN ) ’
Generator Q or) °

GAIN GAIN
| y

1
ol ( l+aNo)

— Signal

Generator

Figure 1.- Schematic of Eg. (73)

However, by making one more assumption, namely that the average

noise count per degree of freedom is small:
oN_ << min [als |2 1 (74)
o it s

Eg. (73) reduces to
2Bt
2 2 0 2
x(1) = D, [ki - als,| ] = n s, |

i=1

(0 < 1 2 t) (75)
and is shown in Figure 2.
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K, + R(1)
= Summer @ -
3
ax (1) ln]sll
Signai
-
Generator

alsi|2

Figure 2.- Schematic of Eg. (75)

Notice that the optimum MAP estimate is performed on the intensity

of the process. That is k; is first compared to alsilz, the
expected count of the received process. Since |si| is the
envelope of the process, it can be written as e2n|si|, and

%§ fnis;| serves the same function as %§-s(t, x) in the MAP

equations for gaussian systems (ref. 19, p. 432).

If the intensity of the process is constant, such as FM,
no phase information can be obtained since %; lnisi] = 0, making
X = 0. To obtain phase information from an FM or a PM signal,
optimal heterodyne detection must be employed. That is, the
signal from a local oscillator is aligned and mixed with the
received signal over the surface of the detector. Then,

Jw,t
+ E_ e 2

L
o)

- jw,t + ¢ ()
S5 El e’ "1

where El and ELO are the two electric field strengths, and

* E(wl - wy)t 4+ ]

2 2 2
|s.[% = [E{|" + [EL |® +4E) E e
O O
~[Jlw;, = w,) t + ¢]
Fete e T %2 ¢ (76)
(o]
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Assuming narrow-band signals, we have

2 2 2
Isil = |El| + IELOI + 2E1EL0 cos [(wl - wz)t + ¢(t)]
(77)
By making the local oscillator signal large |Ep, | >> IE; |,
o
2E
2 2 1 B
|si| = IEL | [i + g cos [(wl wy)t + ¢(t)]] (78)
(o) L
o
and
E
_ 1 2, 1
gn syl =35 an [|s;| = n |ELO] + q—cos [(wl - wy)t + ¢(t)]
o
Hence,
E
d . _ 1 3¢ . _ ]
ox(T) tnfs; | = E. 3x(1) sin [(wl wyl® + (%) (79)
o

We see, then, that the optimum detector is similar, in this case,
to a phase-lock loop. It can also be shown by using Eg. (26) and
references 18 and 26 that if we consider the random variable ki
as a shot-noise process and pass it through a narrow-band filter
with bandwidth 2W tuned to (wl - w2), the density will approach
a gaussian density with mean 2uElELO cos [(wl - w2)t + ¢(t)] and

variance aIELO|2W.

Using the notion of an information kernel, we can lower-

bound the mean-square error of any estimator resulting from Eq.
(66), without specifying the form of the estimator (ref. 19, p. 80).

Defining
_ 9 4n A 3 2n A
Iy = E[Bx(u) 9% (V) ] 80)
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3 &n pX(T)[X(T)] 9 &n px(T)[X(T)]
Jp = E[ ox (u) Tax(v) (81)

JT = JD + JP = jnformation kernel (82)

we can show that

t A 2 _l
J[ [x(T) - ®(t)]°dTt 2 Tr JT (83)
0

The expectation in Egs. (80) and (8l) is over the random function,

X. Combining Egs. (69) and (80), we have

4a2 2Bt 2Bt
J. = E c(k., s.)
D (1 + an )2 {31 {1 S
* Bsi * asi
C(kj, sj)Re[si m Re Sj sx—(v—) (84)

To evaluate this further, the transformation s must be specified.
CONCLUSIONS

We have presented general results for the photoelectron
counting distributions arising from the quantum detection of a
narrow-band gaussian process. The semiclassical approach has led
to probability distributions which could be written explicitly
in terms of the covariance function of the gaussian radiation.
Four different, but equivalent, methods for evaluating the
counting distribution have been presented, the last of which is
valid only for white noise. These could be descriptively titled,
“"the eigenvalue approach," "the iterated kernel approach,”" "the
compound Poisson approach," and "the time-sampling approach.”

The third method is the one in which Eg. (3) is evaluated
directly. Of the four methods, the third and last one lend the
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most physical insight, although the third method is seldom tracta-
ble, computationally. The eigenvalue approach will probably find
the most use in problems of practical importance.

Several examples have been given, with special emphasis on
the important case of a determinjistic signal in white gaussian
noise. Some limiting forms have been derived, and rigorous
justification has been given for the often-made assumption of a
Poisson signal in Poisson noise. Finally, the likelihood func-
tional has been defined, and formal answers have been found for
the continuous MAP and ML estimation problems, including a simple
approximation for low noise, and an expression for the minimum

mean-square error of any estimator.

It should be emphasized that, from a communications view-
point, the detector senses variations in the signal modulus only;
all carrier phase information is lost. This does not mean,
however, that our results are applicable only to direct (or
"energy") detectors. Heterodyne detection can be accomplished
simply by illuminating the detector with a local oscillator field;

the squared modulus then contains the difference frequency term

and the phase information from both the local oscillator and the
received field.
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APPENDIX

Here we mention a few of the more important statistical
gquantities associated with the counting distribution, pNt(k).
First we note that the factorial moments {ﬁ[i]}* of the counting

distribution are equal to the moments {ui} of m, . This is clear

from
i = 2, k(k - 1)...(k - n + 1)p,. (k)
[n] k=n N¢
_ n 3%
= (D" =M, [0 (1 - 8)]
3E t £ =0
= (-1)" oy (-£)
ag™ My E=0
= M, - (Al)

Also, the cumulants of the counting distribution are connected

with the cumulants of m, by

N n Ky
kK, = 2. Aln, i) E5 (A2)
i=1
where
i i i -k ,n
A(n, 1) = 2: ( )(—l) k
= k (A3)
*The tilde () will be used to distinquish moments, etc., of the
counting distribution, from corresponding quantities associated
with m, .
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Equation (A2) is a consequence of differentiating the logarithm

of

~

IV _ 1

(jv) = M_ (e
MNt me

K

w

(eIV - 1k (Ad)

exp 2:
k=1

o

Similarly, it can be shown that

~ n ui
Wy = > A(n, i) — (A5)
i=1 :

Further, the moments {ﬂi} of N are related to the cumulants

{k.} of N_ by Eq. (35). c
With the help of these formulas and known identities (ref.

24), an exhaustive set of relations can be found for the moments,

factorial moments, cumulants, and factorial cumulants of Nt and

m We shall not, however, reproduce these relations here.

£°
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